Computer Architecture
A Quantitative Approach

Fourth Edition

John L. Hennessy is the president of Stanford University, where he has been a member of the
faculty since 1977 in the departments of electrical engineering and computer science. Hen-
nessy is a Fellow of the IEEE and ACM, a member of the National Academy of Engineering and
the National Academy of Science,and a Fellow of the American Academy of Arts and Sciences.
Among his many awards are the 2001 Eckert-Mauchly Award for his contributions to RISC tech-
nology, the 2001 Seymour Cray Computer Engineering Award, and the 2000 John von Neu-
mann Award, which he shared with David Patterson. He has also received seven honorary
doctorates.

* In 1981, he started the MIPS project at Stanford with a handful of graduate students. After com-
pleting the project in 1984, he took a one-year leave from the university to cofound MIPS Com-
puter Systems, which developed one of the first commercial RISC microprocessors. After being
acquired by Silicon Graphics in 1991, MIPS Technologies became an independent company in
1998, focusing on microprocessors for the embedded marketplace. As of 2006, over 500 million
MIPS microprocessors have been shipped in devices ranging from video games and palmtop
computers to laser printers and network switches.

David A. Patterson has been teaching computer architecture at the University of California,
Berkeley, since joining the faculty in 1977, where he holds the Pardee Chair of Computer Sci-
ence. His teaching has been honored by the Abacus Award from Upsiton Pi Epsilon, the Distin-
guished Teaching Award from the University of California, the Karlstrom Award from ACM, and
the Mulligan Education Medal and Undergraduate Teaching Award from |EEE. Patterson re-
ceived the {EEE Technical Achievement Award for contributions to RISC and shared the IEEE
Johnson Information Storage Award for contributions to RAID. He then shared the IEEE John
von Neumann Medal and the C & C Prize with John Hennessy. Like his co-author, Patterson is a
Fellow of the American Academy of Arts and Sciences, ACM, and IEEE,and he was elected to the
National Academy of Engineering, the National Academy of Sciences, and the Silicon Valley En-
gineering Hall of Fame. He served on the Information Technology Advisory Committee to the
U.S. President, as chair of the CS division in the Berkeley EECS department, as chair of the Com-
puting Research Association,and as President of ACM.This record led to a Distinguished Service
Award from CRA.

At Berkeley, Patterson led the design and implementation of RISC |, likely the first VLSI reduced
instruction set computer. This research became the foundation of the SPARC architecture, cur-
rently used by Sun Microsystems, Fujitsu, and others. He was a leader of the Redundant Arrays
of Inexpensive Disks (RAID) project, which led to dependable storage systems from many com-
panies. He was also involved in the Network of Workstations (NOW) project, which led to cluster
technology used by Internet companies. These projects earned three dissertation awards from
the ACM. His current research projects are the RAD Lab, which is inventing technology for reli-
able, adaptive, distributed internet services, and the Research Accelerator for Multiple Proces-
sors (RAMP) project, which is developing and distributing low-cost, highly scalable, parallel
computers based on FPGAs and open-source hardware and software.

Computer Architecture
A Quantitative Approach

Fourth Edition

John L. Hennessy
Stanford University

David A. Patterson
University of California at Berkeley

With Contributions by

Andrea C. Arpaci-Dusseau Diana Franklin

University of Wisconsin-Madison California Polytechnic State University, San Luis Obispo
Remzi H. Arpaci-Dusseau David Goldberg

University of Wisconsin-Madison Xerox Palo Alto Research Center

Krste Asanovic Wen-mei W. Hwu :
Massachusetts Institute of Technology University of lllinois at Urbana—Champaign
Robert P. Colwell Norman P. Jouppi

R&E Colwell & Associates, Inc. HP Labs

Thomas M. Conte Timothy M. Pinkston

North Carolina State University University of Southern California

José Duato John W. Sias

Universitat Politécnica de Valéncia and Simula University of lllinois at Urbana—Champaign

David A. Wood
University of Wicconsin-Madison

Morgan Kaufmann Publishers

An imprint of Elsevier

Srinivas nstitute of Technology

Acc. NO. ..~ I s o N
Call NO. orceerersarans semssasasasanasse

Computer Architecture: A Quantitative Approach, 4ed
Hennessy and Patterson

Morgan Kaufmann Publishers
An Imprint of Elsevier

500 Sansome Street, Suite 400, San Francisco, CA 94111

© 1990, 1996, 2003, 2007, by Elsevier Inc.

Original ISBN: 978-0-12-370490-0

All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means — electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system — without permission in writing from the publisher.

First Printed in India 2007 SIT Librarr
Reprinted 2007 Valachil, Mangalore

Reprinted 2008 (thrice) I m I II II

Reprinted 2009 (thrice)
Reprinted 2010 Acecn No: 017049

Indian Reprint ISBN: 978-81-312-0726-0

This edition is for sale in Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan,
Sri Lanka and designated countries in South-East Asia through Elsevier (Singapore)
Pte. Ltd. Sale and purchase of this book outside of these countries is unauthorised by
the publisher.

Published by Elsevier, a division of Reed Elsevier India Private Limited.

Registered Office: Gate No. 3, Shed A-1, 2 Industrial Area, Kalkaji, New Delhi-110 019.

Sales and Publishing Office: 14th Floor, Building No. 10B, DLF Cyber City, Phase-II,
Gurgaon-122 002, Haryana, India.

Printed and bound at Rajkamal Electric Press, Plot No. 2, Phase IV, Kundli (Haryana).

To Andrea, Linda, and our four sons

Foreword

by Fred Weber, President and CEO of MetaRAM, Inc.

I am honored and privileged to write the foreword for the fourth edition of this
most important book in computer architecture. In the first edition, Gordon Bell,
my first industry mentor, predicted the book’s central position as the definitive
text for computer architecture and design. He was right. I clearly remember the
excitement generated by the introduction of this work. Rereading it now, with
significant extensions added in the three new editions, has been a pleasure all
over again. No other work in computer architecture—frankly, no other work I
have read in any field—so quickly and effortlessly takes the reader from igno-
rance to a breadth and depth of knowledge.

This book is dense in facts and figures, in rules of thumb and theories, in
examples and descriptions. It is stuffed with acronyms, technologies, trends, for-
mulas, illustrations, and tables. And, this is thoroughly appropriate for a work on
architecture. The architect’s role is not that of a scientist or inventor who will
deeply study a particular phenomenon and create new basic materials or tech-
niques. Nor is the architect the craftsman who masters the handling of tools to
craft the finest details. The architect’s role is to combine a thorough understand-
ing of the state of the art of what is possible, a thorough understanding of the his-
torical and current styles of what is desirable, a sense of design to conceive a
harmonious total system, and the confidence and energy to marshal this knowl-
edge and available resources to go out and get something built. To accomplish
this, the architect needs a tremendous density of information with an in-depth
understanding of the fundamentals and a quantitative approach to ground his
thinking. That is exactly what this book delivers.

As computer architecture has evolved—from a world of mainframes, mini-
computers, and microprocessors, to a world dominated by microprocessors, and
now into a world where microprocessors themselves are encompassing all the
complexity of mainframe computers—Hennessy and Patterson have updated
their book appropriately. The first edition showcased the IBM 360, DEC VAX,
and Intel 80x86, each the pinnacle of its class of computer, and helped introduce
the world to RISC architecture. The later editions focused on the details of the
80x86 and RISC processors, which had come to dominate the landscape. This lat-
est edition expands the coverage of threading and multiprocessing, virtualization

X « Computer Architecture

and memory hierarchy, and storage systems, giving the reader context appropri-
ate to today’s most important directions and setting the stage for the next decade
of design. It highlights the AMD Opteron and SUN Niagara as the best examples
of the x86 and SPARC (RISC) architectures brought into the new world of multi-
processing and system-on-a-chip architecture, thus grounding the art and science
in real-world commercial examples.

The first chapter, in less than 60 pages, introduces the reader to the taxono-
mies of computer design and the basic concerns of computer architecture, gives
an overview of the technology trends that drive the industry, and lays out a quan-
titative approach to using all this information in the art of computer design. The
next two chapters focus on traditional CPU design and give a strong grounding in
the possibilities and limits in this core area. The final three chapters build out an
understanding of system issues with multiprocessing, memory hierarchy, and
storage. Knowledge of these areas has always been of critical importance to the
computer architect. In this era of system-on-a-chip designs, it is essential for
every CPU architect. Finally the appendices provide a great depth of understand-
ing by working through specific examples in great detail.

In design it is important to look at both the forest and the trees and to move
easily between these views. As you work through this book you will find plenty
of both. The result of great architecture, whether in computcr design, building
design or textbook design, is to take the customer’s requirements and desires and
return a design that causes that customer to say, “Wow, I didn't know that was
possible.” This book succeeds on that measure and will, I hope, give you as much
pleasure and value as it has me.

Chapter 1

Chapter 2

Contents

Foreword
Preface
Acknowledgments

Fundamentals of Computer Design

1.1 Introduction
1.2 Classes of Computers
1.3 Defining Computer Architecture
1.4 Trends in Technology
1.5 Trends in Power in Integrated Circuits
1.6 Trendsin Cost
1.7 Dependability
1.8 Measuring, Reporting,and Summarizing Performance
1.9 Quantitative Principles of Computer Design
1.10 Putting It All Together: Performance and Price-Performance
1.11 Fallacies and Pitfalls
1.12 Concluding Remarks
1.13 Historical Perspectives and References
Case Studies with Exercises by Diana Franklin

Instruction-Level Parallelism and Its Exploitation

2.1 Instruction-Level Parallelism: Concepts and Challenges
2.2 Basic Compiler Techniques for Exposing ILP

2.3 Reducing Branch Costs with Prediction

24 Overcoming Data Hazards with Dynamic Scheduling
2.5 Dynamic Scheduling:Examples and the Algorithm

2.6 Hardware-Based Speculation

2.7 Exploiting ILP Using Multiple Issue and Static Scheduling

XV

xxiii

14
17
19
25
28
37

48
52
54
55

66
74
80
89
97
104
114

Xi

xii

m Contents

Chapter 3

Chapter4

Chapter 5

2.8 Exploiting ILP Using Dynamic Scheduling, Multiple Issue,
and Speculation
2.9 Advanced Techniques for Instruction Delivery and Speculation
2.10 Putting It Ali Together:The Intel Pentium 4
2.11 Fallacies and Pitfalls
2.12 Concluding Remarks
2.13 Historical Perspective and References
Case Studies with Exercises by Robert P.Colwell

Limits on Instruction-Level Parallelism

3.1 Introduction
3.2 Studies of the Limitations of ILP
3.3 Limitations on ILP for Realizable Processors
3.4 (Crosscutting Issues: Hardware versus Software Speculation
3.5 Multithreading: Using ILP Support to Exploit
Thread-Level Parallelism
3.6 Putting It All Together: Performance and Efficiency in Advanced
Multiple-Issue Processors
3.7 Fallacies and Pitfalls
3.8 Concluding Remarks
3.9 Historical Perspective and References
Case Study with Exercises by Wen-mei W.Hwu and
John W.Sias

Multiprocessors and Thread-Level Parallelism

4.1 Introduction
42 Symmetric Shared-Memory Architectures
4.3 Performance of Symmetric Shared-Memory Multiprocessors
44 Distributed Shared Memory and Directory-Based Coherence
4.5 Synchronization:The Basics
46 Models of Memory Consistency: An Introduction
4.7 Crosscutting Issues
4.8 Putting It All Together:The Sun T1 Multiprocessor
4.9 Fallacies and Pitfalls
4.10 Concluding Remarks
4.11 Historical Perspective and References
Case Studies with Exercises by David A.Wood

Memory Hierarchy Design

5.1 Introduction
5.2 Eleven Advanced Optimizations of Cache Performance
5.3 Memory Technology and Optimizations

118
121
131
138
140
141
142

154
154
165
170

172

179
183
184
185

185

196
205
218
230
237
243
246
249
257
262
264
264

288
293
310

Contents = Xiii

5.4 Protection:Virtual Memory and Virtual Machines 315
5.5 Crosscutting Issues: The Design of Memory Hierarchies 324
5.6 Putting It All Together: AMD Opteron Memory Hierarchy 326
5.7 Fallacies and Pitfalls 335
5.8 Concluding Remarks 341
5.9 Historical Perspective and References 342

Case Studies with Exercises by Norman P. Jouppi 342

Chapter6 Storage Systems

6.1 Introduction 358
6.2 Advanced Topics in Disk Storage 358
6.3 Definition and Examples of Real Faults and Failures 366
6.4 1/0 Performance, Reliability Measures,and Benchmarks 371
6.5 A lLittle Queuing Theory 379
6.6 Crosscutting Issues 390
6.7 Designing and Evaluating an I/O System—The Internet

Archive Cluster 392
6.8 Putting It All Together:NetApp FAS6000 Filer 397
6.9 Fallacies and Pitfalls 399
6.10 Concluding Remarks 403
6.11 Historical Perspective and References 404

Case Studies with Exercises by Andrea C. Arpaci-Dusseau and

Remzi H. Arpaci-Dusseau 404

Appendix A Pipelining: Basic and Intermediate Concepts

A.1 Introduction A-2
A.2 The Major Hurdle of Pipelining-—Pipeline Hazards A-11
A3 How is Pipelining Implemented? A-26
A4 What Makes Pipelining Hard to Implement? A-37
A5 Extending the MIPS Pipeline to Handle Multicycle Operations A-47
A.6 Putting It All Together:The MIPS R4000 Pipeline A-56
A.7 Crosscutting Issues A-65
A8 Fallacies and Pitfalls A-75
A9 Concluding Remarks A-76
A.10 Historical Perspective and References A-77

AppendixB Instruction Set Principles and Examples

B.1 Introduction B-2
B.2 Classifying Instruction Set Architectures B-3
B.3 Memory Addressing B-7
B4 Type and Size of Operands B-13

B.5 Operations in the Instruction Set B-14

xiv = Contents

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G
Appendix H
Appendix |

Appendix J
Appendix K

Appendix L

B.6 Instructions for Control Flow B-16
B.7 Encoding an Instruction Set B-21
B.8 Crosscutting Issues: The Role of Compilers B-24
B.9 Putting It All Together:The MIPS Architecture B-32
B.10 Fallacies and Pitfalls B-39
B.11 Concluding Remarks B-45
B.12 Historical Perspective and References B-47

Review of Memory Hierarchy

C.1 Introduction C-2
C.2 Cache Performance C-15
C.3 Six Basic Cache Optimizations C-22
C4 Virtual Memory C-38
C.5 Protection and Examples of Virtual Memory C-47
C.6 Fallacies and Pitfalls C-56
C.7 Concluding Remarks C-57
C.8 Historical Perspective and References C-58

Companion CD Appendices

Embedded Systems
Updated by Thomas M. Conte

Interconnection Networks
Revised by Timothy M. Pinkston and José Duato

Vector Processors
Revised by Krste Asanovic

Hardware and Software for VLIW and EPIC
Large-Scale Multiprocessors and Scientific Applications

Computer Arithmetic
by David Goldberg

Survey of Instruction Set Architectures
Historical Perspectives and References

Online Appendix (textbooks.elsevier.com/0123704901)

Solutions to Case Study Exercises

References R-1

Index I-1

Preface

Why We Wrote This Book

Through four editions of this book, our goal has been to describe the basic princi-
ples underlying what will be tomorrow’s technological developments. Our
excitement about the opportunities in computer architecture has not abated, and
we echo what we said about the field in the first edition: “It is not a dreary science
of paper machines that will never work. No! It’s a discipline of keen intellectual
interest, requiring the balance of marketplace forces to cost-performance-power,
leading to glorious failures and some notable successes.”

Our primary objective in writing our first book was to change the way people
learn and think about computer architecture. We feel this goal is still valid and
important. The field is changing daily and must be studied with real examples
and measurements on real computers, rather than simply as a collection of defini-
tions and designs that will never need to be realized. We offer an enthusiastic
welcome to anyone who came along with us in the past, as well as to those who
are joining us now. Either way, we can promise the same quantitative approach
to, and analysis of, real systems.

As with earlier versions, we have strived to produce a new edition that will
continue to be as relevant for professional engineers and architects as it is for
those involved in advanced computer architecture and design courses. As much
as its predecessors, this edition aims to demystify computer architecture through
an emphasis on cost-performance-power trade-offs and good engineering design.
We believe that the field has continued to mature and move toward the rigorous
quantitative foundation of long-established scientific and engineering disciplines.

This Edition

The fourth edition of Computer Architecture: A Quantitative Approach may be
the most significant since the first edition. Shortly before we started this revision,
Intel announced that it was joining IBM and Sun in relying on multiple proces-
sors or cores per chip for high-performance designs. As the first figure in the
book documents, after 16 years of doubling performance every 18 months, sin-

XV

Xvi

x Preface

gle-processor performance improvement has dropped to modest annual improve-
ments. This fork in the computer architecture road means that for the first time in
history, no one is building a much faster sequential processor. If you want your
program to run significantly faster, say, to justify the addition of new features,
you’re going to have to parallelize your program.

Hence, after three editions focused primarily on higher performance by
exploiting instruction-level parallelism (ILP), an equal focus of this edition is
thread-level parallelism (TLP) and data-level parallelism (DLP). While earlier
editions had material on TLP and DLP in big multiprocessor servers, now TLP
and DLP are relevant for single-chip multicores. This historic shift led us to
change the order of the chapters: the chapter on multiple processors was the sixth
chapter in the last edition, but is now the fourth chapter of this edition.

The changing technology has also motivated us to move some of the content
from later chapters into the first chapter. Because technologists predict much
higher hard and soft error rates as the industry moves to semiconductor processes
with feature sizes 65 nm or smaller, we decided to move the basics of dependabil-
ity from Chapter 7 in the third edition into Chapter 1. As power has become the
dominant factor in determining how much you can place on a chip, we also
beefed up the coverage of power in Chapter 1. Of course, the content and exam-
ples in all chapters were updated, as we discuss below.

In addition to technological sea changes that have shifted the contents of this
edition, we have taken a new approach to the exercises in this edition. It is sur-
prisingly difficult and time-consuming to create interesting, accurate, and unam-
biguous exercises that evenly test the material throughout a chapter. Alas, the
Web has reduced the half-life of exercises to a few months. Rather than working
out an assignment, a student can search the Web to find answers not long after a
book is published. Hence, a tremendous amount of hard work quickly becomes
unusable, and instructors are denied the opportunity to test what students have
learned.

To help mitigate this problem, in this edition we are trying two new ideas.
First, we recruited experts from academia and industry on each topic to write the
exercises. This means some of the best people in each field are helping us to cre-
ate interesting ways to explore the key concepts in each chapter and test the
reader’s understanding of that material. Second, each group of exercises is orga-
nized around a set of case studies. Our hope is that the quantitative example in
each case study will remain interesting over the years, robust and detailed enough
to allow instructors the opportunity to easily create their own new exercises,
should they choose to do so. Key, however, is that each year we will continue to
release new exercise sets for each of the case studies. These new exercises will
have critical changes in some parameters so that answers to old exercises will no
longer apply.

Another significant change is that we followed the lead of the third edition of
Computer Organization and Design (COD) by slimming the text to include the
material that almost all readers will want to see and moving the appendices that

Preface = xvii

some will see as optional or as reference material onto a companion CD. There
were many reasons for this change:

1. Students complained about the size of the book, which had expanded from
594 pages in the chapters plus 160 pages of appendices in the first edition to
760 chapter pages plus 223 appendix pages in the second edition and then to
883 chapter pages plus 209 pages in the paper appendices and 245 pages in
online appendices. At this rate, the fourth edition would have exceeded 1500
pages (both on paper and online)!

2. Similarly, instructors were concerned about having too much material to
cover in a single course.

3. As was the case for COD, by including a CD with material moved out of the
text, readers could have quick access to all the material, regardless of their
ability to access Elsevier’s Web site. Hence, the current edition’s appendices
will always be available to the reader even after future editions appear.

4. This flexibility allowed us to move review material on pipelining, instruction
sets, and memory hierarchy from the chapters and into Appendices A, B, and
C. The advantage to instructors and readers is that they can go over the review
material much more quickly and then spend more time on the advanced top-
ics in Chapters 2, 3, and 5. It also allowed us to move the discussion of some
topics that are important but are not core course topics into appendices on the
CD. Result: the material is available, but the printed book is shorter. In this
edition we have 6 chapters, none of which is longer than 80 pages, while in
the last edition we had 8 chapters, with the longest chapter weighing in at 127
pages.

5. This package of a slimmer core print text plus a CD is far less expensive to
manufacture than the previous editions, allowing our publisher to signifi-
cantly lower the list price of the book. With this pricing scheme, there is no
need for a separate international student edition for European readers.

Yet another major change from the last edition is that we have moved the
embedded material introduced in the third edition into its own appendix, Appen-
dix D. We felt that the embedded material didn’t always fit with the quantitative
evaluation of the rest of the material, plus it extended the length of many chapters
that were already running long. We believe there are also pedagogic advantages
in having all the embedded information in a single appendix.

This edition continues the tradition of using real-world examples to demon-
strate the ideas, and the “Putting It All Together” sections are brand new; in fact,
some were announced after our book was sent to the printer. The “Putting It All
Together” sections of this edition include the pipeline organizations and memory
hierarchies of the Intel Pentium 4 and AMD Opteron; the Sun T1 (“Niagara™) 8-
processor, 32-thread microprocessor; the latest NetApp Filer; the Internet
Archive cluster; and the IBM Blue Gene/L massively parallel processor.

xviii

u Preface

Topic Selection and Organization

As before, we have taken a conservative approach to topic selection, for there are
many more interesting ideas in the field than can reasonably be covered in a treat-
ment of basic principles. We have steered away from a comprehensive survey of
every architecture a reader might encounter. Instead, our presentation focuses on
core concepts likely to be found in any new machine. The key criterion remains
that of selecting ideas that have been examined and utilized successfully enough
to permit their discussion in quantitative terms.

Our intent has always been to focus on material that is not available in equiva-
lent form from other sources, so we continue to emphasize advanced content
wherever possible. Indeed, there are several systems here whose descriptions
cannot be found in the literature. (Readers interested strictly in a more basic
introduction to computer architecture should read Computer Organization and
Design: The Hardware/Software Interface, third edition.)

An Overview of the Content

Chapter 1 has been beefed up in this edition. It includes formulas for static
power, dynamic power, integrated circuit costs, reliability, and availability. We go
into more depth than prior editions on the use of the geometric mean and the geo-
metric standard deviation to capture the variability of the mean. Our hope is that
these topics can be used through the rest of the book. In addition to the classic
quantitative principles of computer design and performance measurement, the
benchmark section has been upgraded to use the new SPEC2006 suite.

Our view is that the instruction set architecture is playing less of a role today
than in 1990, so we moved this material to Appendix B. It still uses the MIPS64
architecture. For fans of ISAs, Appendix J covers 10 RISC architectures, the
80x86, the DEC VAX, and the IBM 360/370.

Chapters 2 and 3 cover the exploitation of instruction-level parallelism in
high-performance processors, including superscalar execution, branch prediction,
speculation, dynamic scheduling, and the relevant compiler technology. As men-
tioned earlier, Appendix A is a review of pipelining in case you need it. Chapter 3
surveys the limits of ILP. New to this edition is a quantitative evaluation of multi-
threading. Chapter 3 also includes a head-to-head comparison of the AMD Ath-
lon, Intel Pentium 4, Intel Itanium 2, and IBM Power$5, each of which has made
separate bets on exploiting ILP and TLP. While the last edition contained a great
deal on Itanium, we moved much of this material to Appendix G, indicating our
view that this architecture has not lived up to the early claims.

Given the switch in the field from exploiting only ILP to an equal focus on
thread- and data-level parallelism, we moved multiprocessor systems up to Chap-
ter 4, which focuses on shared-memory architectures. The chapter begins with
the performance of such an architecture. It then explores symmetric and
distributed-memory architectures, examining both organizational principles and
performance. Topics in synchronization and memory consistency models are

Preface s Xix

next. The example is the Sun T1 (“Niagara”), a radical design for a commercial
product. It reverted to a single-instruction issue, 6-stage pipeline microarchitec-
ture. It put 8 of these on a single chip, and each supports 4 threads. Hence, soft-
ware sees 32 threads on this single, low-power chip.

As mentioned earlier, Appendix C contains an introductory review of cache
principles, which is available in case you need it. This shift allows Chapter 5 to
start with 11 advanced optimizations of caches. The chapter includes a new sec-
tion on virtual machines, which offers advantages in protection, software man-
agement, and hardware management. The example is the AMD Opteron, giving
both its cache hierarchy and the virtual memory scheme for its recently expanded
64-bit addresses.

Chapter 6, “Storage Systems,” has an expanded discussion of reliability and
availability, a tutorial on RAID with a description of RAID 6 schemes, and rarely
found failure statistics of real systems. It continues to provide an introduction to
queuing theory and I/O performance benchmarks. Rather than go through a series
of steps to build a hypothetical cluster as in the last edition, we evaluate the cost,
performance, and reliability of a real cluster: the Internet Archive. The “Putting It
All Together” example is the NetApp FAS6000 filer, which is based on the AMD
Opteron microprocessor.

This brings us to Appendices A through L. As mentioned earlier, Appendices
A and C are tutorials on basic pipelining and caching concepts. Readers relatively
new to pipelining should read Appendix A before Chapters 2 and 3, and those
new to caching should read Appendix C before Chapter 5.

Appendix B covers principles of ISAs, including MIPS64, and Appendix J
describes 64-bit versions of Alpha, MIPS, PowerPC, and SPARC and their multi-
media extensions. It also includes some classic architectures (80x86, VAX, and
IBM 360/370) and popular embedded instruction sets (ARM, Thumb, SuperH,
MIPS16, and Mitsubishi M32R). Appendix G is related, in that it covers architec-
tures and compilers for VLIW ISAs.

Appendix D, updated by Thomas M. Conte, consolidates the embedded mate-
rial in one place.

Appendix E, on networks, has been extensively revised by Timothy M. Pink-
ston and José Duato. Appendix F, updated by Krste Asanovic, includes a descrip-
tion of vector processors. We think these two appendices are some of the best
material we know of on each topic.

Appendix H describes parallel processing applications and coherence proto-
cols for larger-scale, shared-memory multiprocessing. Appendix I, by David
Goldberg, describes computer arithmetic.

Appendix K collects the “Historical Perspective and References” from each
chapter of the third edition into a single appendix. It attempts to give proper
credit for the ideas in each chapter and a sense of the history surrounding the
inventions. We like to think of this as presenting the human drama of computer
design. It also supplies references that the student of architecture may want to
pursue. If you have time, we recommend reading some of the classic papers in
the field that are mentioned in these sections. It is both enjoyable and educational

XX wm Preface

to hear the ideas directly from the creators. “Historical Perspective” was one of
the most popular sections of prior editions.

Appendix L (available at textbooks.elsevier.com/0123704901) contains solu-
tions to the case study exercises in the book.

Navigating the Text

There is no single best order in which to approach these chapters and appendices,
except that all readers should start with Chapter 1. If you don’t want to read
everything, here are some suggested sequences:

m ILP: Appendix A, Chapters 2 and 3, and Appendices F and G

m Memory Hierarchy: Appendix C and Chapters 5 and 6

m Thread-and Data-Level Parallelism: Chapter 4, Appendix H, and Appendix E
m ISA: Appendices B and J

Appendix D can be read at any time, but it might work best if read after the ISA
and cache sequences. Appendix I can be read whenever arithmetic moves you.

Chapter Structure

The material we have selected has been stretched upon a consistent framework
that is followed in each chapter. We start by explaining the ideas of a chapter.
These ideas are followed by a “Crosscutting Issues” section, a feature that shows
how the ideas covered in one chapter interact with those given in other chapters.
This is followed by a “Putting It All Together” section that ties these ideas
together by showing how they are used in a real machine.

Next in the sequence is “Fallacies and Pitfalls,” which lets readers learn from
the mistakes of others. We show examples of common misunderstandings and
architectural traps that are difficult to avoid even when you know they are lying in
wait for you. The “Fallacies and Pitfalls” sections is one of the most popular sec-
tions of the book. Each chapter ends with a “Concluding Remarks” section.

Case Studies with Exercises

Each chapter ends with case studies and accompanying exercises. Authored by
experts in industry and academia, the case studies explore key chapter concepts
and verify understanding through increasingly challenging exercises. Instructors
should find the case studies sufficiently detailed and robust to allow them to cre-
ate their own additional exercises.

Brackets for each exercise (<chapter.section>) indicate the text sections of
primary relevance to completing the exercise. We hope this helps readers to avoid
exercises for which they haven’t read the corresponding section, in addition to
providing the source for review. Note that we provide solutions to the case study

Preface m Xxi

exercises in Appendix L. Exercises are rated, to give the reader a sense of the
amount of time required to complete an exercise:

[10] Less than 5 minutes (to read and understand)

[15] 5—-15 minutes for a full answer

[20] 15-20 minutes for a full answer

[25]1 1 hour for a full written answer

[30] Short programming project: less than 1 full day of programming
[40] Significant programming project: 2 weeks of elapsed time

[Discussion] Topic for discussion with others

A second set of alternative case study exercises are available for instructors

who register at textbooks.elseviercom/0123704901. This second set will be
revised every summer, so that early every fall, instructors can download a new set
of exercises and solutions to accompany the case studies in the book.

Supplemental Materials

The accompanying CD contains a variety of resources, including the following:

Reference appendices—some guest authored by subject experts—covering a
range of advanced topics

Historical Perspectives material that explores the development of the key
ideas presented in each of the chapters in the text

Search engine for both the main text and the CD-only content

Additional resources are available at textbooks.elsevier.com/0123704901. The

instructor site (accessible to adopters who register at textbooks.elsevier.com)
includes:

Alternative case study exercises with solutions (updated yearly)
Instructor slides in PowerPoint
Figures from the book in JPEG and PPT formats

The companion site (accessible to all readers) includes:

Solutions to the case study exercises in the text
Links to related material on the Web

List of errata

New materials and links to other resources available on the Web will be

added on a regular basis.

xxii

m Preface

Helping Improve This Book

Finally, it is possible to make money while reading this book. (Talk about cost-
performance!) If you read the Acknowledgments that follow, you will see that we
went to great lengths to correct mistakes. Since a book goes through many print-
ings, we have the opportunity to make even more corrections. If you uncover any
remaining resilient bugs, please contact the publisher by electronic mail
(ca4bugs @mkp.com). The first reader to report an error with a fix that we incor-
porate in a future printing will be rewarded with a $1.00 bounty. Please check the
errata sheet on the home page (textbooks.elsevier.com/0123704901) to see if the
bug has already been reported. We process the bugs and send the checks about
once a year or so, so please be patient.

We welcome general comments to the text and invite you to send them to a
separate email address at cadcomments @ mkp.com.

Concluding Remarks

Once again this book is a true co-authorship, with each of us writing half the
chapters and an equal share of the appendices. We can’t imagine how long it
would have taken without someone else doing half the work, offering inspiration
when the task seemed hopeless, providing the key insight to explain a difficult
concept, supplying reviews over the weekend of chapters, and commiserating
when the weight of our other obligations made it hard to pick up the pen. (These
obligations have escalated exponentially with the number of editions, as one of us
was President of Stanford and the other was President of the Association for
Computing Machinery.) Thus, once again we share equally the blame for what
you are about to read.

John Hennessy s David Patterson

Acknowledgments

Although this is only the fourth edition of this book, we have actually created
nine different versions of the text: three versions of the first edition (alpha, beta,
and final) and two versions of the second, third, and fourth editions (beta and
final). Along the way, we have received help from hundreds of reviewers and
users. Each of these people has helped make this book better. Thus, we have cho-
sen to list all of the people who have made contributions to some version of this
book.

Contributors to the Fourth Edition

Like prior editions, this is a community effort that involves scores of volunteers.
Without their help, this edition would not be nearly as polished.

Reviewers

Krste Asanovic, Massachusetts Institute of Technology; Mark Brehoo, University
of Michigan; Sudhanva Gurumurthi, University of Virginia; Mark D. Hill, Uni-
versity of Wisconsin—-Madison; Wen-mei Hwu, University of Illinois at Urbana-
Champaign; David Kaeli, Northeastern University; Ramadass Nagarajan, Univer-
sity of Texas at Austin; Karthikeyan Sankaralingam, Univeristy of Texas at Aus-
tin, Mark Smotherman., Clemson University; Gurindar Sohi, University of
Wisconsin—-Madison; Shyamkumar Thoziyoor, University of Notre Dame, Indi-
ana; Dan Upton, University of Virginia; Sotirios G. Ziavras, New Jersey Institute
of Technology

Focus Group

Krste Asanovic, Massachusetts Institute of Technology; José Duato, Universitat
Politecnica de Valeéncia and Simula; Antonio Gonzélez, Intel and Universitat
Politécnica de Catalunya; Mark D. Hill, University of Wisconsin-Madison; Lev
G. Kirischian, Ryerson University; Timothy M. Pinkston, University of Southern
California

xxiii

XXiv

Acknowledgments

Appendices

Krste Asanovic, Massachusetts Institute of Technology (Appendix F); Thomas
M. Conte, North Carolina State University (Appendix D); José Duato, Universi-
tat Politecnica de Valéncia and Simula (Appendix E); David Goldberg, Xerox
PARC (Appendix I); Timothy M. Pinkston, University of Southern California
(Appendix E)

Case Studies with Exercises

Andrea C. Arpaci-Dusseau, University of Wisconsin-Madison (Chapter 6); Remzi
H. Arpaci-Dusseau, University of Wisconsin-Madison (Chapter 6); Robert P. Col-
well, R&E Colwell & Assoc., Inc. (Chapter 2); Diana Franklin, California Poly-
technic State University, San Luis Obispo (Chapter 1); Wen-mei W. Hwu,
University of Ilinois at Urbana—Champaign (Chapter 3); Norman P. Jouppi, HP
Labs (Chapter S); John W. Sias, University of Illinois at Urbana—Champaign
(Chapter 3); David A. Wood, University of Wisconsin-Madison (Chapter 4)

Additional Material

John Mashey (geometric means and standard deviations in Chapter 1); Chenming
Hu, University of California, Berkeley (wafer costs and yield parameters in
Chapter 1); Bill Brantley and Dan Mudgett, AMD (Opteron memory hierarchy
evaluation in Chapter 5); Mendel Rosenblum, Stanford and VMware (virtual
machines in Chapter 5); Aravind Menon, EPFL Switzerland (Xen measurements
in Chapter 5); Bruce Baumgart and Brewster Kahle, Internet Archive (IA cluster
in Chapter 6); David Ford, Steve Kleiman, and Steve Miller, Network Appliances
(FX6000 information in Chapter 6); Alexander Thomasian, Rutgers (queueing
theory in Chapter 6)

Finally, a special thanks once again to Mark Smotherman of Clemson Univer-
sity, who gave a final technical reading of our manuscript. Mark found numerous
bugs and ambiguities, and the book is much cleaner as a result.

This book could not have been published without a publisher, of course. We
wish to thank all the Morgan Kaufmann/Elsevier staff for their efforts and sup-
port. For this fourth edition, we particularly want to thank Kimberlee Honjo who
coordinated surveys, focus groups, manuscript reviews and appendices, and Nate
McFadden, who coordinated the development and review of the case studies. Our
warmest thanks to our editor, Denise Penrose, for her leadership in our continu-
ing writing saga.

We must also thank our university staff, Margaret Rowland and Cecilia
Pracher, for countless express mailings, as well as for holding down the fort at
Stanford and Berkeley while we worked on the book.

Our final thanks go to our wives for their suffering through increasingly early
mornings of reading, thinking, and writing.

Acknowledgments = XXV

Contributors to Previous Editions

Reviewers

George Adams, Purdue University; Sarita Adve, University of Illinois at Urbana—
Champaign; Jim Archibald, Brigham Young University; Krste Asanovic, Massa-
chusetts Institute of Technology; Jean-Loup Baer, University of Washington;
Paul Barr, Northeastern University; Rajendra V. Boppana, University of Texas,
San Antonio; Doug Burger, University of Texas, Austin; John Burger, SGI;
Michael Butler; Thomas Casavant; Rohit Chandra; Peter Chen, University of
Michigan; the classes at SUNY Stony Brook, Carnegie Mellon, Stanford, Clem-
son, and Wisconsin; Tim Coe, Vitesse Semiconductor; Bob Colwell, Intel; David
Cummings; Bill Dally; David Douglas; Anthony Duben, Southeast Missouri
State University; Susan Eggers, University of Washington; Joel Emer; Barry
Fagin, Dartmouth; Joel Ferguson, University of California, Santa Cruz; Carl Fey-
nman; David Filo; Josh Fisher, Hewlett-Packard Laboratories; Rob Fowler,
DIKU; Mark Franklin, Washington University (St. Louis); Kourosh Gharachor-
loo; Nikolas Gloy, Harvard University; David Goldberg, Xerox Palo Alto
Research Center; James Goodman, University of Wisconsin-Madison; David
Harris, Harvey Mudd College; John Heinlein; Mark Heinrich, Stanford; Daniel
Helman, University of California, Santa Cruz; Mark Hill, University of Wiscon-
sin-Madison; Martin Hopkins, IBM; Jerry Huck, Hewlett-Packard Laboratories;
Mary Jane Irwin, Pennsylvania State University; Truman Joe; Norm Jouppi;
David Kaeli, Northeastern University; Roger Kieckhafer, University of
Nebraska; Earl Killian; Allan Knies, Purdue University; Don Knuth; Jeff Kuskin,
Stanford; James R. Larus, Microsoft Research; Corinna Lee, University of Tor-
onto; Hank Levy; Kai Li, Princeton University; Lori Liebrock, University of
Alaska, Fairbanks; Mikko Lipasti, University of Wisconsin—-Madison; Gyula A.
Mago, University of North Carolina, Chapel Hill; Bryan Martin; Norman Mat-
loff; David Meyer; William Michalson, Worcester Polytechnic Institute; James
Mooney; Trevor Mudge, University of Michigan; David Nagle, Carnegie Mellon
University; Todd Narter; Victor Nelson; Vojin Oklobdzija, University of Califor-
nia, Berkeley; Kunle Olukotun, Stanford University; Bob Owens, Pennsylvania
State University; Greg Papadapoulous, Sun; Joseph Pfeiffer; Keshav Pingali,
Cornell University; Bruno Preiss, University of Waterloo; Steven Przybylski; Jim
Quinlan; Andras Radics; Kishore Ramachandran, Georgia Institute of Technol-
ogy; Joseph Rameh, University of Texas, Austin; Anthony Reeves, Cornell Uni-
versity; Richard Reid, Michigan State University; Steve Reinhardt, University of
Michigan; David Rennels, University of California, Los Angeles; Arnold L.
Rosenberg, University of Massachusetts, Amherst; Kaushik Roy, Purdue Univer-
sity; Emilio Salgueiro, Unysis; Peter Schnorf; Margo Seltzer; Behrooz Shirazi,
Southern Methodist University; Daniel Siewiorek, Carnegie Mellon University;
J. P. Singh, Princeton; Ashok Singhal; Jim Smith, University of Wisconsin—
Madison; Mike Smith, Harvard University; Mark Smotherman, Clemson Univer-
sity; Guri Sohi, University of Wisconsin-Madison; Arun Somani, University of

XXVi

= Acknowledgments

Washington; Gene Tagliarin, Clemson University; Evan Tick, University of Ore-
gon; Akhilesh Tyagi, University of North Carolina, Chapel Hill; Mateo Valero,
Universidad Politécnica de Catalufia, Barcelona; Anujan Varma, University of
California, Santa Cruz; Thorsten von Eicken, Cornell University; Hank Walker,
Texas A&M; Roy Want, Xerox Palo Alto Research Center; David Weaver, Sun;
Shlomo Weiss, Tel Aviv University; David Wells; Mike Westall, Clemson Univer-
sity; Maurice Wilkes; Eric Williams; Thomas Willis, Purdue University; Malcolm
Wing; Larry Wittie, SUNY Stony Brook; Ellen Witte Zegura, Georgia Institute of
Technology

Appendices

The vector appendix was revised by Krste Asanovic of the Massachusetts Insti-
tute of Technology. The floating-point appendix was written originally by David
Goldberg of Xerox PARC.

Exercises

George Adams, Purdue University; Todd M. Bezenek, University of Wisconsin—
Madison (in remembrance of his grandmother Ethel Eshom); Susan Eggers,
Anoop Gupta; David Hayes; Mark Hill; Allan Knies; Ethan L. Miller, University
of California, Santa Cruz; Parthasarathy Ranganathan, Compaq Western
Research Laboratory; Brandon Schwartz, University of Wisconsin-Madison;
Michael Scott; Dan Siewiorek; Mike Smith; Mark Smotherman; Evan Tick; Tho-
mas Willis.

Special Thanks

Duane Adams, Defense Advanced Research Projects Agency; Tom Adams; Sarita
Adve, University of Illinois at Urbana—Champaign; Anant Agarwal; Dave Albo-
nesi, University of Rochester; Mitch Alsup; Howard Alt; Dave Anderson; Peter
Ashenden; David Bailey; Bill Bandy, Defense Advanced Research Projects
Agency; L. Barroso, Compaq’s Western Research Lab; Andy Bechtolsheim; C.
Gordon Bell; Fred Berkowitz; John Best, IBM; Dileep Bhandarkar; Jeff Bier,
BDTI; Mark Birman; David Black; David Boggs; Jim Brady; Forrest Brewer;
Aaron Brown, University of California, Berkeley; E. Bugnion, Compaq’s West-
ern Research Lab; Alper Buyuktosunoglu, University of Rochester; Mark Cal-
laghan; Jason F. Cantin; Paul Carrick; Chen-Chung Chang; Lei Chen, University
of Rochester; Pete Chen; Nhan Chu; Doug Clark, Princeton University; Bob
Cmelik; John Crawford; Zarka Cvetanovic; Mike Dahlin, University of Texas,
Austin; Merrick Darley; the staff of the DEC Western Research Laboratory; John
DeRosa; Lloyd Dickman; J. Ding; Susan Eggers, University of Washington; Wael
El-Essawy, University of Rochester; Patty Enriquez, Mills; Milos Ercegovac;
Robert Gamner; K. Gharachorloo, Compaq’s Western Research Lab; Garth Gib-
son; Ronald Greenberg; Ben Hao; John Henning, Compaq; Mark Hill, University

Acknowledgments = XxxVii

of Wisconsin-Madison; Danny Hillis; David Hodges; Urs Hoelzle, Google;
David Hough; Ed Hudson; Chris Hughes, University of Illinois at Urbana—
Champaign; Mark Johnson; Lewis Jordan; Norm Jouppi; William Kahan; Randy
Katz; Ed Kelly; Richard Kessler; Les Kohn; John Kowaleski, Compaq Computer
Corp; Dan Lambright; Gary Lauterbach, Sun Microsystems; Corinna Lee; Ruby
Lee; Don Lewine; Chao-Huang Lin; Paul Losleben, Defense Advanced Research
Projects Agency; Yung-Hsiang Lu; Bob Lucas, Defense Advanced Research
Projects Agency; Ken Lutz; Alan Mainwaring, Intel Berkeley Research Labs; Al
Marston; Rich Martin, Rutgers; John Mashey; Luke McDowell; Sebastian
Mirolo, Trimedia Corporation; Ravi Murthy; Biswadeep Nag; Lisa Noordergraaf,
Sun Microsystems; Bob Parker, Defense Advanced Research Projects Agency;
Vern Paxson, Center for Internet Research; Lawrence Prince; Steven Przybylski;
Mark Pullen, Defense Advanced Research Projects Agency; Chris Rowen; Marg-
aret Rowland; Greg Semeraro, University of Rochester; Bill Shannon; Behrooz
Shirazi; Robert Shomler; Jim Slager; Mark Smotherman, Clemson University;
the SMT research group at the University of Washington; Steve Squires, Defense
Advanced Research Projects Agency; Ajay Sreekanth; Darren Staples; Charles
Stapper; Jorge Stolfi; Peter Stoll; the students at Stanford and Berkeley who
endured our first attempts at creating this book; Bob Supnik; Steve Swanson;
Paul Taysom; Shreekant Thakkar; Alexander Thomasian, New Jersey Institute of
Techrology; John Toole, Defensé Advanced Research Projects Agency; Kees A.
Vissers, Trimedia Corporation; Willa Walker; David Weaver; Ric Wheeler, EMC;
Maurice Wilkes; Richard Zimmerman.

John Hennessy s David Patterson

Introduction

Classes of Computers

Defining Computer Architecture

Trends in Technology

Trends in Power in Integrated Circuits

Trends in Cost

Dependability

Measuring, Reporting, and Summarizing Performance
Quantitative Principles of Computer Design

Putting It All Together: Performance and Price-Performance
Fallacies and Pitfalls

Concluding Remarks

Historical Perspectives and References

Case Studies with Exercises by Diana Franklin

14
17
19
25
28
37

48
52
54
55

